11 research outputs found

    Evidence for anaerobic oxidation of methane in sediments of a freshwater system (Lago di Cadagno)

    Get PDF
    Anaerobic oxidation of methane (AOM) has been investigated in sediments of a high alpine sulfate-rich lake. Hot spots of AOM could be identified based on geochemical and isotopic evidence. Very high fractionation of methane (α=1.031) during oxidation was observed in the uppermost sediment layers, where methane is oxidized most likely with sulfate-containing bottom waters. However, we could not exclude that other electron acceptors such as iron, or manganese might also be involved. Light carbon isotope values (ÎŽ13C=−10‰ vs. Vienna Pee Dee Belemnite [VPDB]) of sedimentary carbonates at 16-20 cm sediment depth are indicative of a zone where methane was oxidized and the resulting bicarbonate ions were used for carbonate precipitation. 16S rRNA gene analysis revealed the presence of sequences belonging to the marine benthic groups B, C, and D and to the recently described clade of AOM-associated archaea (AAA). Catalyzed reporter deposition-FISH analysis revealed a high abundance of Deltaproteobacteria, especially of free-living sulfate-reducing bacteria of the Desulfosarcina/Desulfococcus branch of Deltaproteobacteria in the AOM zone. Here, loose aggregations of AAA cells were found, suggesting that AAA might be responsible for oxidation of methane in Lake Cadagno sediment

    Abundance, Distribution, and Activity of Fe(II)-Oxidizing and Fe(III)-Reducing Microorganisms in Hypersaline Sediments of Lake Kasin, Southern Russia

    Get PDF
    The extreme osmotic conditions prevailing in hypersaline environments result in decreasing metabolic diversity with increasing salinity. Various microbial metabolisms have been shown to occur even at high salinity, including photosynthesis as well as sulfate and nitrate reduction. However, information about anaerobic microbial iron metabolism in hypersaline environments is scarce. We studied the phylogenetic diversity, distribution, and metabolic activity of iron(II)-oxidizing and iron(III)-reducing Bacteria and Archaea in pH-neutral, iron-rich salt lake sediments (Lake Kasin, southern Russia; salinity, 348.6 g liter-1) using a combination of culture-dependent and -independent techniques. 16S rRNA gene clone libraries for Bacteria and Archaea revealed a microbial community composition typical for hypersaline sediments. Most-probable-number counts confirmed the presence of 4.26×102 to 8.32×103 iron(II)-oxidizing Bacteria and 4.16×102 to 2.13×103 iron(III)-reducing microorganisms per gram dry sediment. Microbial iron(III) reduction was detected in the presence of 5 M NaCl, extending the natural habitat boundaries for this important microbial process. Quantitative real-time PCR showed that 16S rRNA gene copy numbers of total Bacteria, total Archaea, and species dominating the iron(III)-reducing enrichment cultures (relatives of Halobaculum gomorrense, Desulfosporosinus lacus, and members of the Bacilli) were highest in an iron oxide-rich sediment layer. Combined with the presented geochemical and mineralogical data, our findings suggest the presence of an active microbial iron cycle at salt concentrations close to the solubility limit of NaCl

    Linking Microbial Phylogeny to Metabolic Activity at the Single-Cell Level by Using Enhanced Element Labeling-Catalyzed Reporter Deposition Fluorescence In Situ Hybridization (EL-FISH) and NanoSIMS▿ †

    No full text
    To examine phylogenetic identity and metabolic activity of individual cells in complex microbial communities, we developed a method which combines rRNA-based in situ hybridization with stable isotope imaging based on nanometer-scale secondary-ion mass spectrometry (NanoSIMS). Fluorine or bromine atoms were introduced into cells via 16S rRNA-targeted probes, which enabled phylogenetic identification of individual cells by NanoSIMS imaging. To overcome the natural fluorine and bromine backgrounds, we modified the current catalyzed reporter deposition fluorescence in situ hybridization (FISH) technique by using halogen-containing fluorescently labeled tyramides as substrates for the enzymatic tyramide deposition. Thereby, we obtained an enhanced element labeling of microbial cells by FISH (EL-FISH). The relative cellular abundance of fluorine or bromine after EL-FISH exceeded natural background concentrations by up to 180-fold and allowed us to distinguish target from non-target cells in NanoSIMS fluorine or bromine images. The method was optimized on single cells of axenic Escherichia coli and Vibrio cholerae cultures. EL-FISH/NanoSIMS was then applied to study interrelationships in a dual-species consortium consisting of a filamentous cyanobacterium and a heterotrophic alphaproteobacterium. We also evaluated the method on complex microbial aggregates obtained from human oral biofilms. In both samples, we found evidence for metabolic interactions by visualizing the fate of substrates labeled with 13C-carbon and 15N-nitrogen, while individual cells were identified simultaneously by halogen labeling via EL-FISH. Our novel approach will facilitate further studies of the ecophysiology of known and uncultured microorganisms in complex environments and communities

    Evidence for anaerobic oxidation of methane in sediments of a freshwater system (Lago di Cadagno)

    No full text
    Anaerobic oxidation of methane (AOM) has been investigated in sediments of a high alpine sulfate-rich lake. Hot spots of AOM could be identified based on geochemical and isotopic evidence. Very high fractionation of methane (α=1.031) during oxidation was observed in the uppermost sediment layers, where methane is oxidized most likely with sulfate-containing bottom waters. However, we could not exclude that other electron acceptors such as iron, or manganese might also be involved. Light carbon isotope values (ÎŽ13C=−10‰ vs. Vienna Pee Dee Belemnite [VPDB]) of sedimentary carbonates at 16–20 cm sediment depth are indicative of a zone where methane was oxidized and the resulting bicarbonate ions were used for carbonate precipitation. 16S rRNA gene analysis revealed the presence of sequences belonging to the marine benthic groups B, C, and D and to the recently described clade of AOM-associated archaea (AAA). Catalyzed reporter deposition-FISH analysis revealed a high abundance of Deltaproteobacteria, especially of free-living sulfate-reducing bacteria of the Desulfosarcina/Desulfococcus branch of Deltaproteobacteria in the AOM zone. Here, loose aggregations of AAA cells were found, suggesting that AAA might be responsible for oxidation of methane in Lake Cadagno sediments

    Novel observations of Thiobacterium, a sulfur-storing Gammaproteobacterium producing gelatinous mats

    No full text
    The genus Thiobacterium includes uncultivated rod-shaped microbes containing several spherical grains of elemental sulfur and forming conspicuous gelatinous mats. Owing to the fragility of mats and cells, their 16S ribosomal RNA genes have not been phylogenetically classified. This study examined the occurrence of Thiobacterium mats in three different sulfidic marine habitats: a submerged whale bone, deep-water seafloor and a submarine cave. All three mats contained massive amounts of Thiobacterium cells and were highly enriched in sulfur. Microsensor measurements and other biogeochemistry data suggest chemoautotrophic growth of Thiobacterium. Sulfide and oxygen microprofiles confirmed the dependence of Thiobacterium on hydrogen sulfide as energy source. Fluorescence in situ hybridization indicated that Thiobacterium spp. belong to the Gammaproteobacteria, a class that harbors many mat-forming sulfide-oxidizing bacteria. Further phylogenetic characterization of the mats led to the discovery of an unexpected microbial diversity associated with Thiobacterium
    corecore